W Knowledgebase of Interatomic Models

http://OpenKIM.org

Ryan S. Elliott

Department of Aerospace Engineering and Mechanics
The University of Minnesota, Iwin Cities, Minneapolis, MN 55455, USA

Co-Pls: Ellad B.Tadmor (U. Minnesota), James P. Sethna (Cornell University)

funded by

@ NSF Cyber-Enabled Discovery and Innovation (CDI) program

LAMMPS Workshop — August 7,2013

https://openkim.org
https://openkim.org

Four Barriers faced by Molecular Modelers

Difficulties developers and users of interatomic models face include:

@ No easy access to an extensive list of reliable reference data from
experiments and first principles calculations for fitting.

OpenKIM.org

Four Barriers faced by Molecular Modelers

Difficulties developers and users of interatomic models face include:

@ No easy access to an extensive list of reliable reference data from
experiments and first principles calculations for fitting.

@ No easy access to implementations of existing models with known
provenance and cross-language capability.

OpenKIM.org

Four Barriers faced by Molecular Modelers

Difficulties developers and users of interatomic models face include:

@ No easy access to an extensive list of reliable reference data from
experiments and first principles calculations for fitting.

@ No easy access to implementations of existing models with known
provenance and cross-language capability.

@ No standardized tests for evaluating properties of molecular systems.

OpenKIM.org

Four Barriers faced by Molecular Modelers

Difficulties developers and users of interatomic models face include:

@ No easy access to an extensive list of reliable reference data from
experiments and first principles calculations for fitting.

@ No easy access to implementations of existing models with known
provenance and cross-language capability.

@ No standardized tests for evaluating properties of molecular systems.

@ No framework for evaluating the precision and transferability of models
and therefore no rigorous guidelines for choosing an appropriate model
for a given application.

OpenKIM.org

Knowledgebase of Interatomic Models (KIM)

KIM

The Knowledgebase of Interatomic Models (KIM) project is et SO
based on a four-year NSF cyber-enabled discovery and ot
innovation (CDI) grant and has the following main objectives: e

Stage |

e Development of an online open resource for standardized testing long-term
warehousing of interatomic models (potentials and force fields) and data.

* Development of an application programming interface (API) standard for atomistic
simulations, which will allow any interatomic model to work seamlessly with any

atomistic simulation code.

Stage Il

* Fostering the development of a quantitative theory of transferability of interatomic
models to provide guidance for selecting application-appropriate models based on
rigorous criteria, and error bounds on results.

OpenKIM.org

KIM Overview

Browser-based tools
and web services

Repository: A user-extendible database of
» interatomic Models | ’
» standardized Tests (simulation codes) *
» Predictions (results from Model-Test couplings) / o | _
» Reference Data (obtained from experiments |] ‘
and first principles calculations) \ '

Web portal: A web interface that will facilitate: 1 KIM
» user upload and download of Tests, Models and M
Reference Data
» searching and querying the repository
» comparing and visualizing Predictions and Reference Data
» recording user feedback

External repositories

Processing pipeline: An automatic system for generating Predictions by
mating Tests and Models in the KIM Repository.
» puts the “knowledge” in “knowledgebase”

OpenKIM.org 7

KIM API Standard

An Application Programming Interface (API) standard has been defined which enables
any Test to work seamlessly with any Model.

Test pointer Model
(simulation code) (interatomic potential)
pointer
malin program subroutine
/ (standardized,)
packed
e Stand-alone computer program or data e Subroutine that given a set of
input script to library code that structure atomic positions, species, ...
computes a property of interest. “APl Object” computes energy, forces, ...
e Can be written in any language \ / e Can be written in any language
supported by the API (Fortran 77, supported by the API (Fortran 77,
Fortran 90, C, C++, Python, Java, ...) Fortran 90, C, C++, Python, Java, ...)

Objective: to have the KIM API be adopted as a community standard so that
any interatomic Model will be able to be run with any simulation code.

OpenKIM.org 8

Web page demo of Models, Tests, and Drivers

Ryan S. Elliott

m About ~ AP| ~ Resources ~ Contact

“Essentially, all models are wrong, but some are useful.”

— George E. P. Box

L Openkiv

Welcome to the Knowledgebase of Interatomic Models

An online resource for standardized testing and long-term warehousing of
interatomic models and data. This includes the development of application
programming interface (API) standards for coupling atomistic simulation codes
and interatomic potential subroutines.

Please choose an item from the above menu.

Latest News Job Openings

Visit the news archive for all news items Contact us if you would like to post a job
related to interatomic model

Contact us if you would like to contribute a news item.
development.

Excellent Junior and Senior
Updated pair_style kim release in LAMMPS 3Aug13 Researchers Needed for KIM

Development

26-Jul-2013

The KIM development team is please to announce the release iU

of a openkim-api-v1.2.0 compatible version of the LAMMPS pair The Knowledgebase of Interatomic

style kim. The version of pair_style kim is available in the August Models (KIM) project is seeking excellent
3th, 2013 version of lammps (lammps-3Aug13). researchers at both junior and senior

levels with strong computational skills to
work on various aspects of KIM
development.

See more Updated pair_style kim release in LAMMPS 3Aug13

See more here
KIM API version 1.2.0 released
12-Jul-2013

The KIM development team is pleased to announce the release of version 1.2.0 of the KIM application programming
interface (API). By conforming to this API, an atomistic simulation code will seamlessly work with any KIM-compliant
interatomic model written in any supported language. This release includes a completely redesigned Make system
with many new features and benefits, a new NEIGH_RVEC_H NBC, a streamlined scheme for specifying a Model
(or Model Driver name) and its associated “model_init()" function name, other minor changes to the api, bug fixes,
portability improvements, and some new examples.

See more KIM API version 1.2.0 released

KIM Content Camival in Singapore (October 9-12, 2012)
20-Jul-2012

Come to Singapore this fall during October 8-12, 2012 for a 4-day free event, to learn about KIM and make your
potential compatible with the KIM Application Programming Interface (API).

See more KIM Content Carnival in Singapore (October 9-12, 2012)

KIM API version 1.1.0 released
12-Jul-2012

The KIM development team is pleased to announce the release of version 1.1.0 of the KIM application programming
interface (API). By conforming to this API, an atomistic simulation code will seamlessly work with any KIM-compliant
interatomic model written in any supported language. This release includes many bug fixes, portability
improvements, an updated Model Driver interface, and some minor changes to functionality.

See more KIM API version 1.1.0 released

KIM Content Carnival in Aachen, Germany (August 20-23, 2012)
21-May-2012

Come to Aachen, Germany this summer during August 20-23, 2012 for a 4-day free event, to learn about KIM and
make your potential compatible with the KIM Application Programming Interface (API).

See more KIM Content Carnival in Aachen, Germany (August 20-23, 2012)

KIM Board Election Results
07-Feb-2012

The slate of nominees for the KIM Board (Ronald Miller, Sadasivan Shankar and Aidan Thompson) suggested by the
Nominating Committe has been unanimously approved by the KIM Membership.

See more KIM Board Election Results

KIM Requirements Document Launched
20-Sep-2011

The KIM development team is pleased to announce that the KIM Requirements Document (RD) is now available
online here. RDs are common in industry where they are used to fully define all aspects of new products during the
development stage. The KIM RD addresses topics ranging from the organization and governance of KIM to the
details of the KIM application programming interface (API).

See more KIM Requirements Document Launched

Article on KIM published in JOM
30-Jul-2011

A feature article titled “The Potential of Atomistic Simulations and the Knowledgebase of Interatomic Models” has
recently been published in the July issue of JOM, the member journal of TMS. The article describes the main
objectives of the KIM project and its status as of July 2011.

See more Article on KIM published in JOM

KIM Inaugural Meeting held in San Diego
01-Mar-2011

The KIM project had its Inaugural Meeting in San Diego, CA, on February 26-27, 2011. Important steps were taken
at this meeting to define the goals and structure of KIM based on the needs of the atomistic simulation community.

See more KIM Inaugural Meeting held in San Diego

@ The OpenKIM project is supported by NSF funding.

m About ~ APl ~ Resources ~ Contact

KIM Application Programming Interface (API)

Overview

The KIM API is an Application Programming Interface for atomistic simulations. The API provides a standard for exchanging information between
atomistic simulation codes (molecular dynamics, molecular statics, lattice dynamics, Monte Carlo, etc.) and interatomic models (potentials or force
fields). It also includes a set of library routines for using the API with bindings for

FORTRAN 77
Fortran 90/95
e C

o C+4

By conforming to this API, an atomistic simulation code will seamlessly work with any KIM-compliant interatomic model written in any supported
language. The interface is computationally efficient and often requires relatively minor changes to existing codes.

Downloading the Most Recent APl Package

The most recent packaged download of the KIM API is available here:
openkim-api-latest

Details about the latest release and installation instructions are available here.
Our API is under version control with Git hosted at GitHub.

Archive of Older Versions:

¢ openkim-api-v1.2.1.tgz - first available on 2013/07/21
¢ openkim-api-v1.2.0.tgz - first available on 2013/07/12
¢ openkim-api-v1.1.1.tgz - first available on 2012/08/19
¢ openkim-api-v1.1.0.tgz - first available on 2012/07/12
¢ openkim-api-v1.0.1.tgz - first available on 2012/02/25
¢ openkim-api-v1.0.0.tgz - first available on 2011/02/22
¢ openkim-api-v0.2.0.tgz - first available on 2011/09/15
¢ openkim-api-v0.1.2.tgz - first available on 2011/08/22
¢ openkim-api-v0.1.1.tgz - first available on 2011/08/16
¢ openkim-api-v0.1.0.tgz - first available on 2011/08/08

What is in the api package?

The current version of the openkim-api package includes the api itself and the following example codes:
Models:

(for more information see the file $(KD)/EXAMPLES/MODELS/EXAMPLES.README)

« Lennard-Jones pair potential shifted to zero energy at cutoff.

o Parameterized for Ar and Ne (ex_model_Ar_P_LJ, ex_model_Ne_P_LJ)

o An implementation for Ne that is optimized for computational speed (ex_model_Ne_P_fastLJ)

o An implementation for Ne that demonstrates the use of F77 with the api (ex_model_Ne_P_LJ_NEIGH_PURE_H)

Lennard-Jones pair potential with quadratic cutoff function.
o Parameterized for Ar and Ne. (ex_model_Ar_P_MLJ_C, ex_model_Ar_P_MLJ_CLUSTER_C, ex_model_Ar_P_MLJ_CLUSTER_FS0,
ex_model_Ar_P_MLJ_F80, ex_model_Ar_P_MLJ_MI_OPBC_H_F, ex_model_Ar_P_MLJ_NEIGH_PURE_H_F,
ex_model_Ar_MLJ_NEIGH_RVEC_F, ex_model_Ne_P_MLJ_NEIGH_RVEC_H)
o Note: multiple versions of this potential are provided in order to demonstrate the various features and options of the api.
Morse pair potential shifted to zero energy at cutoff.

o Parameterized for Ar and Ne (ex_model_Ar_P_Morse, ex_model_Ne_P_Morse)
Lennard-Jones alloy pair potential with quadratic cutoff function.

o Parameterized for ArNe alloys (ex_model_ArNe_P_MLJ_NEIGH_RVEC_F)
Ercolessi Adams EAM potential for Al.

« Johnson EAM potential for Cu.
Tests:
(for more information see the file $(KD)/EXAMPLES/TESTS/EXAMPLES.README)

« Compute the energy and forces on a finite chunk of an fcc crystal. Versions for Al, Ar, Cu and Ne are provided. (ex_test_Al_free_cluster,
ex_test_Ar_free_cluster, ex_test_Ar_free_cluster_CLUSTER_C, ex_test_Ar_free_cluster_CLUSTER_F90,
ex_test_Ar_free_cluster_CLUSTER_memory_FS0, ex_text_Cu_free_cluster, ex_test_Ne_free_cluster, ex_test_Ne_free_cluster_SlI,
ex_test_Ne_free_cluster_stiff)

o The ex_test_Ne_free_cluster_SI and ex_test_Ne_free_cluster_stiff versions use the Sl unit system and compute the Hessian for the
cluster, respectively.

« Compute the relaxed lattice spacing and cohesive energy of a periodic infinite fcc crystal of Al, Ar, and Ne.
(ex_test_Al_FCCcohesive_MI_OPBC, ex_test_Ar_FCCcohesive_MI_OPBC, ex_test_Ar_FCCcohesive_NEIGH_PURE,
ex_test_Ar_FCCcohesive_NEIGH_RVEC)

+ Compute the relaxed lattice spacing and cohesive energy of a periodic infinite B2 crystal of ArNe. (ex_test_ArNe_periodic_B2_NEIGH_RVEC)

« Compute the relaxed lattice spacing and cohesive energy of a periodic infinite fcc crystal of Ar for a variety of Model cutoff values.
(ex_test_Ar_FCCcohesiveCutoff NEIGH_RVEC)

« Compute energy and forces for two models in one Test (ex_test_Ar_multiple_models) This Test is meant to illustrate some more advanced
usage of the api.

Verification Checks:
« Perform a smart numerical derivative of the energy and compare the results to the forces. (vc_forces_numer_deriv)
« Perform a different smart numerical derivative of the energy and compare the results to the forces. (vc_forces_delta)

+ Perform an energy and forces computation for a provided configuration and compare the results to a provided expected result
(vc_config_ener_forces)

KIM API Boot Camp: Learning to use the API

Although the below Boot Camp inforamtion is for openkim-api-v1.0.0/v1.1.0, much of the inforamtion is still valid and useful. The API is not difficult to
use but involves new concepts and requires some training. For users interested in adapting their programs (simulation codes and/or interatomic
models) to become “KIM compliant” (i.e. conform to the KIM API), we recommend the following training:

1. Dowload the following presentations and training material that will referred to and used by the online lectures described below.
+ KIM Overview Talk by Prof. Ellad B. Tadmor (pdf file)
« Introduction to the KIM API by Prof. Ryan S. Elliott (pdf file)
« Training material (v1.0.0 gzipped tarball) or (v1.1.0 gzipped tarball)
NOTE: The resources listed above may also be downloaded as a single package here.

Unpack the training material tarball using the following Unix/Linux command:
% tar zxvf openkim-api-training-v1.0.0.tgz
This package contains the following example files:

openkim-api-training-v1.0.0/MODELs/ex_model_Ar_P_Morse_01C/
openkim-api-training-v1.0.0/MODELs/ex_model_Ar_P_Morse_02C/

openkim-api-training-v1.0.0/MODELs/ex_model_Ar_P_Morse_14(C/
Each of these examples is incrementally more complex than the previous one. It's a great way to develop an understanding of the API. The
online lectures described below go over these examples in a step-by-step fashion.

2. Watch the following online lectures:
+ Overview of the KIM Project by Prof. Ellad B. Tadmor.... VIEW LECTURE

o]

Motivation for the KIM project and its goals

Basic openKIM.org components (Data, Models, Tests)

Processing pipeline and the KIM API

Examples of how openKIM.org will work in practice

« Introduction to the KIM API by Prof. Ryan S. Elliott - Part |.... VIEW LECTURE

o

o]

o]

o Overview of the KIM API

o Basic Model components, optional computation, process_ mechanisms

o Walk through of Examples 01-04
« CLUSTER energy
« CLUSTER energy, force, particleEnergy (all optional)
« CLUSTER virial, particleVirial, hessian
= CLUSTER process_dEdr, process_d2Edr2

« Introduction to the KIM API by Prof. Ryan S. Elliott - Part Il.... VIEW LECTURE

o Neighbor lists and boundary conditions (NBCs), half lists, iterator/locator modes
o Walk through of Examples 04-06
« Review of Example 04, NBC CLUSTER energy, force, ...
« NBC NEIGH_PURE_H
= |terator mode
« Introduction to the KIM API by Prof. Ryan S. Elliott - Part lll.... VIEW LECTURE

o Walk through of Examples 07-08
« Full neighbor lists
« Parallel computing
« NBC NEIGH_PURE_F
« NBC NEIGH_RVEC_F
o How Tests provide neighbor lists (ex_test_Ar_FCCcohesive_NEIGH_PURE)
« Introduction to the KIM API by Prof. Ryan S. Elliott - Part IV.... VIEW LECTURE

o Walk through of Examples 09-11

« NBCs MI_OPBC_H and MI_OPBC_F
= Model Parameters
= Flexible unit handling

3. Do the “Boot Camp” exercises given in this assignment: bootcamp_exercises.pdf
Compare your results with the solutions in bootcamp_exercises_SOLUTION. pdf.

The exercises involve simulations using a basic KIM-compliant molecular statics/molecular dynamics code called “MiniMol” which can be
obtained here: MiniMol Program (v1.0.0 gzipped tarball) or (v1.1.1 gzipped tarball)

To run this program you must first install the KIM API (see “Downloading the Most Recent API Package” above). Then do the following:
% mv MiniMol.tgz SKIM_DIR/TESTs
% cd SKIM_DIR/Tests
% tar zxvf MiniMol.tgz
% cd SKIM_DIR

% make
% rehash # you only need to do this if you are using csh or tcsh

In the above, “SKIM_DIR" is the directory where you installed the openKIM API package. This will create the executable MiniMol in
SKIM_DIR/TESTs/MiniMol.
All of the data files needed for the Boot Camp exercises are stored in SKIM_DIR/TESTs/MiniMol/Data
4. Read the "README" file in the DOCs directory of the KIM API distribution package:
SKIM_DIR/DOCs/README

Here “SKIM_DIR" represents the directory where you installed the KIM API. The README file walks you through the examples provided with
the API distribution and directs you to other documentation files that you should read.

With the above training completed, a user should be ready to adapt existing code to become KIM compliant and to write new KIM compliant code
from scratch.

To test your understanding of this process, you can try the following exercise. Take a simple stand-alone program that reads a file with atom types
and coordinates and, treating this as an isolated cluster of atoms, computes the system’s energy and the energy and force components for each
atom. Your task is to transform this program into two parts: A KIM compliant Model (kcc_model_exp6) and a KIM compliant Test (kcc_test_cluster).
The example codes (in C and Fortran 80) can be downloaded here:

e KCC_Hands-on_C.tgz
e KCC_Hands-on_F90.tgz

Getting Help

Support is always available by sending an email with a question and all relevant information to
openkim@googlegroups.com

The message will be posted to the openkim google group:
http://groups.google.com/group/openkim

Members of the openKIM development team actively monitor this forum and will do their best to respond to questions in a timely fashion. This forum
is also used to announce minor new releases and bug fixes.

It is highly recommended for users who plan to work with the KIM API to become members of the openkim group. (Just go to the above link and
click on “Join this group” on the right of the screen.)

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

pair_style kim command

Syntax:
pair_style kim virialmode model

¢ virialmode = KIMyvirial or LAMMPSvirial
¢ model = name of KIM model (potential)

Examples:

pair style kim KIMvirial model Ar P Morse
pair_coeff * * Ar Ar

Description:

This pair style is a wrapper on the Knowledge Base for Interatomic Models (KIM) repository of interatomic potentials, so that they can be used by LAMMPS scripts.

In KIM lingo, a potential is a "model" and a model contains both the analytic formulas that define the potential as well as the parameters needed to run it for one or more
materials, including coefficients and cutoffs.

The argument virialmode determines how the global virial is calculated. If KIMvirial is specified, the KIM model performs the global virial calculation. If LAMMPSvirial is
specified, LAMMPS computes the global virial using its fdotr mechanism.

The argument model is the name of the KIM model for a specific potential as KIM defines it. In principle, LAMMPS can invoke any KIM model. You should get an error or
warning message from either LAMMPS or KIM if there is an incompatibility.

Only a single pair_coeff command is used with the kim style which specifies the mapping of LAMMPS atom types to KIM elements. This is done by specifying N additional
arguments after the * * in the pair_coeff command, where N is the number of LAMMPS atom types:

¢ N clement names = mapping of KIM elements to atom types

As an example, imagine the KIM model supports Si and C atoms. If your LAMMPS simulation has 4 atom types and you want the 1st 3 to be Si, and the 4th to be C, you
would use the following pair_coeff command:

pair coeff * * Si Si Si C

The 1st 2 arguments must be * * so as to span all LAMMPS atom types. The first three Si arguments map LAMMPS atom types 1,2,3 to Si as defined within KIM. The final C
argument maps LAMMPS atom type 4 to C as defined within KIM. If a mapping value is specified as NULL, the mapping is not performed. This can only be used when a kim
potential is used as part of the hybrid pair style. The NULL values are placeholders for atom types that will be used with other potentials.

In addition to the usual LAMMPS error messages, the KIM library itself may generate errors, which should be printed to the screen. In this case it is also useful to check the
kim.log file for additional error information. This file kim.log should be generated in the same directory where LAMMPS is running.

Here is information on how to build KIM for use with LAMMPS. There is a directory src/KIM/ with an important file in it: Makefile.lammps. When you do 'make yes-kim'
LAMMPS will use the settings in src/KIM/Makefile.lammps to find KIM header files and the KIM library itself for linking purposes. Thus, you should ensure Makefile.lammps
has the correct settings for your system and your build of KIM.

Consult the KIM documentation for further details on KIM specifics.

OpenKIM is available for download from this site, namely http://openkim.org. The tarball you download is "openkim-api-vX.X . X.tgz", which can be unpacked via
tar xvfz openkim*tgz

The openkim-api-vX.X.X/DOCS directory has further documentation. For more information on installing KIM and troubleshooting refer to openkim/INSTALL.
Here is a brief summary of how to build KIM:

1. If you have previously used the openkim-api package (versions 1.1.1 or below), it is recommended that you remove all associated environment variables from your
environment. (These include, KIM_DIR, KIM_INTEL, KIM_SYSTEM32, KIM_DYNAMIC, KIM_API_DIR, KIM_TESTS_DIR, KIM_MODEL_DRIVERS_DIR,
and KIM_MODELS_DIR.) All setting are now specified in the Makefile. KIM_Config file.

2. Set up the Makefile. KIM_Config file

(a) Copy the file Makefile.KIM Config.example to Makefile.KIM Config
For example, if you untarred the “openkim-api-vX.X.X.tgz' tarball in
your home directory, you would do:

% cd SHOME/openkim-api-vX.X.X
* cp Makefile.KIM Config.example Makefile.KIM Config

The “%' symbol represents the bash sell prompt and should not be typed.

(Above "vX.X.X' represents the current release number.)

(b) Edit the file Makefile.KIM Config and set the appropriate value for the
KIM DIR variable. This must expand to an absolute path. Using the same
assumptions as above, this would be

KIM DIR = $(HOME)/openkim-api-vX.X.X

(c) If appropriate, set explicit values for the remaining three
directories

KIM MODEL_DRIVERS DIR =
KIM MODELS_DIR =
KIM TESTS DIR =

If these lines are commented out, defaults will be provided by the
openkim-api make system.

(d) Set the value of KIM COMPILERSUITE. Possible values are GCC' and
“INTEL'.

KIM_COMPILERSUITE = GCC

(e) Set the value of KIM SYSTEMLINKER. Possible values are “linux’',
“freebsd', and “darwin’'.

KIM SYSTEMLINKER = linux

(f) Set the value of KIM SYSTEMARCH. Possible values are " 32bit' and
“64bit’'.

KIM SYSTEMARCH = 64bit

(g) Set the value of KIM LINK. Possible values are “dynamic-load’,
“dynamic-link', and “static-link’.

KIM LINK = dynamic-load

“dynamic-load' is the preferred option. (Unless performance or
other issues regquire it, you should use dynamic-load.)
“dynamic-link' is like “dynamic-load' but does not use the dl.h
library. This option regquires a more complicated Makefile
process, but may improve computation time in some instances.
"static-link' only works with ONE Model and AT MOST ONE Model
Driver (in order to avoid the possibility of symbol

clashes).

(h) Set override values for other variables, if necessary, by
adding the desired variable name (after the "# overwrite
default variable values here"” line) and filling in appropriate
values.

overwrite default variable values here
overwrite default compiler options

CC =

CXX =

FC =

overwrite default compiler option flag lists

FFLAGS =
CCFLAGS =
CXXFLAGS =
LDFLAGS =

overwrite default linker options
LDSHAREDFLAG =

LINKSONAME =
LDWHOLEARCHIVESTARTFLAGC =
LDWHOLEARCHIVEENDFLAG =

overwrite default install directories
package_name =

prefix =

libdir =

3. In the remainder of the documentation we will use the string SKD to represent the location of the openkim-api source package (the value of the KIM_DIR variable
discussed above). If you wish to, type the below commands exactly as written to set the shell variable KD to the appropriate value:

bash:
% export KD=$HOME/openkim-api-vX.X.X

4. To compile the package, including the provided examples, change to the SKD directory and execute “make examples' and then “make':

* cd SKD
* make examples
* make

This builds all Model Drivers, Models, Tests, and the openkim-api service
routine library. The targets defined by the Makefile in this directory

include:

“make'’ -- compiles the API and all Models and Tests

“make all’ -- same as make'

"make clean’ -=- will remove appropriate .o, .mod, .a, .so and
executable files

"make install’ -- install files to “/usr/local/lib' by default

"make uninstall’ -- delete files installed by "make install’

"make openkim-api’ -- compiles only the API

"make examples' -- copies examples into the appropriate
directories (no overwrite)

"make examples-force' -- copies examples into the appropriate
directories (overwrite)

"make examples-clean' -- remove all examples from the MODEL_DRIVERS,

MODELS, and TESTS directories.
5. Verify that the compilation was successful by running a Test.

The provided example Tests read in the name of a Model (or Models)
which they use to perform their calculations. For most Tests the
name of the Model can be piped in using an “echo' command. For
example, the following Fortran 90 Test reads in one Model:

* cd $KD/TESTs/test Ar free cluster CLUSTER_F90
% echo "model_Ar P_MLJ CLUSTER C" | ./test_Ar_ free_cluster_ CLUSTER_F90

(See the README files in the Test directories for an explanation of what
the Tests do.)

6. Each Test (and Model) has its own make file for compiling and linking. If changes are made to the code, re-compile (from the SKD directory).

Mixing, shift, table, tail correction, restart, rRESPA info:
This pair style does not support the pair modify mix, shift, table, and tail options.

This pair style does not write its information to binary restart files, since KIM stores the potential parameters. Thus, you need to re-specify the pair_style and pair_coeff
commands in an input script that reads a restart file.

This pair style can only be used via the pair keyword of the run_style respa command. It does not support the inner, middle, outer keywords.

Restrictions:
This pair style is part of the KIM package. It is only enabled if LAMMPS was built with that package. See the Making LAMMPS section for more info.
This current version of pair_style kim is compatible with the openkim-api package version 1.2.0 and higher.
Related commands:
air_coeff

Default: none

Properties Primitives

Models - by Model Drivers

Model Drivers

Alphabetical BySpecies ByDriver By Tests
Test Drivers
Reference Data

Verification Models

Verification Tests

CF_Tersoff _MD_941831228559 000

Title Extended KIM ID
CF_T2_Si CF_T2_Si__MO_128738412454_000
CF_T3_Si CF_T3_Si__MO_101002579388_000

CF_exTersoff _ MD_151418255940_000

Title Extended KIM ID

CF_ELAST_Si CF_ELAST_Si__MO_113514803518_000
CF_MELT_Si CF_MELT_Si__MO_178316347627_000
CF_MOD_Si CF_MOD_Si__MO_119804179894_000

EAM_Dynamo__MD_120291908751_000

Title Extended KIM ID

EAM_Dynamo_Ackland_Bacon_Fe EAM_Dynamo_Ackland_Bacon_Fe__MO_142799717516_000
EAM_Dynamo_Ackland_Mendelev_FeP EAM_Dynamo_Ackland_Mendelev_FeP__MO_884343146310_000
EAM_Dynamo_Ackland_Ti EAM_Dynamo_Ackland_Ti__MO_748534961139_000
EAM_Dynamo_Ackland_Tichy_Ag EAM_Dynamo_Ackland_Tichy_Ag__MO_212700056563_000
EAM_Dynamo_Ackland_Tichy_Au EAM_Dynamo_Ackland_Tichy_Au__MO_104891429740_000
EAM_Dynamo_Ackland_Tichy_Cu EAM_Dynamo_Ackland_Tichy_Cu__MO_179025990738_000
EAM_Dynamo_Ackland_Tichy_Ni EAM_Dynamo_Ackland_Tichy_Ni__MO_9877363131043_000
EAM_Dynamo_Ackland_W EAM_Dynamo_Ackland_W__MO_1416271965380_000
EAM_Dynamo_Adams_Foiles_Ag_u4 EAM_Dynamo_Adams_Foiles_Ag_u4__MO_366710161005_000
EAM_Dynamo_Adams_Foiles_Au_u4 EAM_Dynamo_Adams_Foiles_Au_u4__MO_542075092223_000
EAM_Dynamo_Adams_Foiles_Cu_u4 EAM_Dynamo_Adams_Foiles_Cu_u4__MO_783346091107_000
EAM_Dynamo_Adams_Foiles_Ni_u4 EAM_Dynamo_Adams_Foiles_Ni_u4__MO_130989848973_000
EAM_Dynamo_Adams_Foiles_Pt_u4 EAM_Dynamo_Adams_Foiles_Pt_ud4__MO_117515733772_000
EAM_Dynamo_Angelo_Moody NiAIH EAM_Dynamo_Angelo_Moody_NIAIH__MO_418978237058_000
EAM_Dynamo_Bonny_Pasianot_FeCuNi EAM_Dynamo_Bonny_Pasianot_FeCuNi__MO_469343973171_000
EAM_Dynamo_Bonny_Pasianot_FeNi EAM_Dynamo_Bonny_Pasianot_FeNi__MO_267721408934_000
EAM_Dynamo_Cai_Ye_AICu EAM_Dynamo_Cal_Ye_AICu__MO_842551040047_000
EAM_Dynamo_Ercolessi_Adams_Al EAM_Dynamo_Ercolessi_Adams_Al__MO_123629422045_000
EAM_Dynamo_Fellinger_Park_Nb EAM_Dynamo_Fellinger_Park_Nb__MO_102133002179_000
EAM_Dynamo_Foiles_Cu_u3 EAM_Dynamo_Foiles_Cu_u3__MO_468316472729_000
EAM_Dynamo_Foiles_CuNi EAM_Dynamo_Foiles_CuNi__MO_869958188303_000
EAM_Dynamo_Fortini_Mendelev_Ru EAM_Dynamo_Fortini_Mendelev_Ru__MO_114077951467_000
EAM_Dynamo_Grochola_Russo_Au EAM_Dynamo_Grochola_Russo_Au__MO_852752408985_000
EAM_Dynamo_Hepburn_Ackland_FeC EAM_Dynamo_Hepburn_Ackland_FeC__MO_143977152728_000
EAM_Dynamo_Hoyt_Garvin_PbCu EAM_Dynamo_Hoyt_Garvin_PbCu__MO_119135752160_000
EAM_Dynamo_Landa_Wynblatt_AIPb EAM_Dynamo_Landa_Wynblatt_AIPb__MO_699137396381_000
EAM_Dynamo_Li_Siegel_Ta EAM_Dynamo_Li_Siegel_Ta__MO_103054252769_000
EAM_Dynamo_Liu_Adams_MgAl EAM_Dynamo_Liu_Adams_MgAl__MO_544273640230_000
EAM_Dynamo_Liu_Ercolessi_Al EAM_Dynamo_Liu_Ercolessi_Al__MO_194915988663_000
EAM_Dynamo_Liu_Liu_AICu EAM_Dynamo_Liu_Liu_AICu__MO_128706169020_000
EAM_Dynamo_Liu_Liu_AlFe EAM_Dynamo_Liu_Liu_AlFe__MO_503784222035_000
EAM_Dynamo_Liu_Ohotnicky_MgAl EAM_Dynamo_Liu_Ohotnicky_MgAl__MO_135676685253_000
EAM_Dynamo_Mendelev_Asta_AIMg EAM_Dynamo_Mendelev_Asta_AlMg__MO_658278549784_000
EAM_Dynamo_Mendelev_Han_Fe_ 2 EAM_Dynamo_Mendelev_Han_Fe_2__MO_769582363433_000
EAM_Dynamo_Mendelev_Han_Fe_ 5 EAM_Dynamo_Mendelev_Han_Fe_5__MO_942420706858_000
EAM_Dynamo_Mendelev_Han_VFe EAM_Dynamo_Mendelev_Han_VFe__MO_249706810527_000
EAM_Dynamo_Mendelev_King_Cu EAM_Dynamo_Mendelev_King_Cu__MO_748636486270_000
EAM_Dynamo_Mendelev_Kramer_Al EAM_Dynamo_Mendelev_Kramer_Al__MO_106969701023_000
EAM_Dynamo_Mendelev_Kramer_Cu EAM_Dynamo_Mendelev_Kramer_Cu__MO_845691923444_000
EAM_Dynamo_Mendelev_Kramer_CuZr EAM_Dynamo_Mendelev_Kramer_CuZr__MO_600021860456_000
EAM_Dynamo_Mendelev_Ni EAM_Dynamo_Mendelev_Ni__MO_832600236922_000
EAM_Dynamo_Mendelev_NiZr EAM_Dynamo_Mendelev_NiZr__MO_149104665840_000
EAM_Dynamo_Mendelev_Sordelet_CuZr EAM_Dynamo_Mendelev_Sordelet_CuZr__MO_120596890176_000
EAM_Dynamo_Mendelev_Srolovitz_AlFe EAM_Dynamo_Mendelev_Srolovitz_AlFe__MO_577453891941_000
EAM_Dynamo_Mishin_Farkas_Al EAM_Dynamo_Mishin_Farkas_Al__MO_651801486679_000
EAM_Dynamo_Mishin_Farkas_Ni EAM_Dynamo_Mishin_Farkas_Ni__MO_400591584784_000
EAM_Dynamo_Mishin_Mehl_Cu EAM_Dynamo_Mishin_Mehl_Cu__MO_346334655118_000
EAM_Dynamo_Mishin_Mehl_NiAl EAM_Dynamo_Mish